PANEL HEREDITARY COLORECTAL AND POLYPOSIS DG-4.2.0 (22 GENES)

Gene	Twist X2 covered 10x	Twist X2 covered 20x	srWGS covered 10x	srWGS covered 15x	srWGS covered 20x	Associated Phenotype description and OMIM disease ID
APC	100%	100%	100%	100%	99.4%	Colorectal cancer, somatic, 114500;Brain tumor-polyposis syndrome 2, 175100;Desmoid disease, hereditary, 135290;Adenoma, periampullary, somatic, 175100;Hepatoblastom a, somatic, 114550;Gastric cancer, somatic, 613659;Gastric adenocarcinoma and proximal polyposis of the stomach, 619182;Gardner syndrome, 175100;Adenomatous polyposis coli, 175100

AXIN2	100%	100%	100%	99.9%	98.4%	Colorectal cancer, somatic, 114500;Oligodontia- colorectal cancer syndrome, 608615
BMPR1A	100%	100%	100%	100%	99.5%	Polyposis syndrome, hereditary mixed, 2, 610069;Polyposis, juvenile intestinal, 174900
EPCAM	100%	100%	100%	99.9%	99.3%	Diarrhea 5, with tufting enteropathy, congenital, 613217;Lynch syndrome 8, 613244
MBD4	100%	100%	100%	100%	99.2%	{Uveal melanoma, susceptibility to, 1}, 606660;Tumor predisposition syndrome 2, 619975
MCM8	94.4%	94.4%	100%	99.9%	99.5%	?Premature ovarian failure 10, 612885
МСМ9	100%	100%	100%	100%	99.2%	Ovarian dysgenesis 4, 616185
MLH1	100%	100%	100%	99.9%	99.4%	Lynch syndrome 2, 609310;Muir-Torre syndrome, 158320;Mismatch repair cancer syndrome 1, 276300

MLH3	100%	100%	99.8%	99.5%	98.5%	{Endometrial cancer, susceptibility to}, 608089;Colorectal cancer, somatic, 114500;Colorectal cancer, hereditary nonpolyposis, type 7, 614385
MSH2	100%	100%	100%	100%	99.4%	Lynch syndrome 1, 120435;Muir-Torre syndrome, 158320;Mismatch repair cancer syndrome 2, 619096
MSH3	100%	100%	100%	99.8%	98.7%	Familial adenomatous polyposis 4, 617100;Endometrial carcinoma, somatic, 608089
MSH6	100%	100%	100%	99.8%	98.6%	Lynch syndrome 5, 614350;Mismatch repair cancer syndrome 3, 619097;{Endometrial cancer, familial}, 608089
MUTYH	100%	100%	100%	99.9%	99.5%	Adenomas, multiple colorectal, 608456; Gastric cancer, somatic, 613659
NTHL1	100%	99.9%	100%	100%	99.1%	Familial adenomatous polyposis 3, 616415

PMS2	93.7%	93.4%	100%	99.9%	99.2%	Lynch syndrome 4, 614337;Mismatch repair cancer syndrome 4, 619101
POLD1	100%	100%	100%	99.8%	98%	Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, 615381;Immunodeficie ncy 120, 620836;{Colorectal cancer, susceptibility to, 10}, 612591
POLE	100%	100%	100%	99.9%	99%	{Colorectal cancer, susceptibility to, 12}, 615083;FILS syndrome, 615139;IMAGE-I syndrome, 618336
PTEN	94.5%	94.5%	100%	99.9%	99.2%	{Glioma susceptibility 2}, 613028;{Meningioma}, 607174;Cowden syndrome 1, 158350;Lhermitte- Duclos disease, 158350;Prostate cancer, somatic, 176807;Macrocephaly/ autism syndrome, 605309

RNF43	100%	100%	100%	99.9%	99.1%	Sessile serrated polyposis cancer syndrome, 617108
RPS20	100%	100%	100%	100%	99%	
SMAD4	100%	100%	100%	100%	99.5%	Pancreatic cancer, somatic, 260350;Myhre syndrome, 139210;Polyposis, juvenile intestinal, 174900;Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome, 175050
STK11	100%	100%	100%	100%	99.2%	Melanoma, malignant, somatic, 155600; Pancreatic cancer, somatic, 260350; Peutz-Jeghers syndrome, 175200; Testicular tumor, somatic, 273300

Gene symbols used follow HGCN guidelines: Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Nucleic Acids Res. 2015 Jan 43(Database issue):D1079-85.

TWIST X2 covered 10x describes the percentage of a gene's coding sequence that is covered at least 10x when analyzed by WES using TWIST X2 chemistry mapped against GRCh38.

TWIST X2 covered 20x describes the percentage of a gene's coding sequence that is covered at least 20x when analyzed by WES using TWIST X2 chemistry mapped against GRCh38.

srWGS covered 10x describes the percentage of a gene's coding sequence that is covered at least 10x when analyzed by WGS mapped against GRCh38. srWGS covered 15x describes the percentage of a gene's coding sequence that is covered at least 15x when analyzed by WGS mapped against GRCh38. srWGS covered 20x describes the percentage of a gene's coding sequence that is covered at least 20x when analyzed by WGS mapped against GRCh38. non-protein coding genes are covered, but as coverage statistics are based on protein coding regions, statistics could not be generated.

OMIM release used for OMIM disease identifiers and descriptions: November 25th, 2024.

This list is accurate for panel version DG 4.2.0

Ad 1.	Blank field signifies	a gene without a current O	MIM association Ad 2.	OMIM phenotype descriptions l	between {} signify risk factors	